本文实例讲述了.NET下文本相似度算法余弦定理和SimHash浅析及应用。分享给大家供大家参考。具体分析如下:
余弦相似性
原理:首先我们先把两段文本分词,列出来所有单词,其次我们计算每个词语的词频,最后把词语转换为向量,这样我们就只需要计算两个向量的相似程度.
 
我们简单表述如下
 
文本1:我/爱/北京/天安门/ 经过分词求词频得出向量(伪向量)  [1,1,1,1]
 
文本2:我们/都爱/北京/天安门/ 经过分词求词频得出向量(伪向量)  [1,0,1,2]
 
我们可以把它们想象成空间中的两条线段,都是从原点([0, 0, ...])出发,指向不同的方向。两条线段之间形成一个夹角,如果夹角为0度,意味着方向相同、线段重合;如果夹角为90度,意味着形成直角,方向完全不相似;如果夹角为180度,意味着方向正好相反。因此,我们可以通过夹角的大小,来判断向量的相似程度。夹角越小,就代表越相似。
 
C#核心算法:
复制代码 代码如下:    public class TFIDFMeasure
    {
        private string[] _docs;
        private string[][] _ngramDoc;
        private int _numDocs=0;
        private int _numTerms=0;
        private ArrayList _terms;
        private int[][] _termFreq;
        private float[][] _termWeight;
        private int[] _maxTermFreq;
        private int[] _docFreq;
 
        public class TermVector
        {        
            public static float ComputeCosineSimilarity(float[] vector1, float[] vector2)
            {
                if (vector1.Length != vector2.Length)                
                    throw new Exception("DIFER LENGTH");
                
 
                float denom=(VectorLength(vector1) * VectorLength(vector2));
                if (denom == 0F)                
                    return 0F;                
                else                
                    return (InnerProduct(vector1, vector2) / denom);
                
            }
 
            public static float InnerProduct(float[] vector1, float[] vector2)
            {
            
                if (vector1.Length != vector2.Length)
                    throw new Exception("DIFFER LENGTH ARE NOT ALLOWED");
                
            
                float result=0F;
                for (int i=0; i < vector1.Length; i++)                
                    result += vector1[i] * vector2[i];
                
                return result;
            }
        
            public static float VectorLength(float[] vector)
            {            
                float sum=0.0F;
                for (int i=0; i < vector.Length; i++)                
                    sum=sum + (vector[i] * vector[i]);
                        
                return (float)Math.Sqrt(sum);
            }
        }
 
        private IDictionary _wordsIndex=new Hashtable() ;
 
        public TFIDFMeasure(string[] documents)
        {
            _docs=documents;
            _numDocs=documents.Length ;
            MyInit();
        }
 
        private void GeneratNgramText()
        {
            
        }
 
        private ArrayList GenerateTerms(string[] docs)
        {
            ArrayList uniques=new ArrayList() ;
            _ngramDoc=new string[_numDocs][] ;
            for (int i=0; i < docs.Length ; i++)
            {
                Tokeniser tokenizer=new Tokeniser() ;
                string[] words=tokenizer.Partition(docs[i]);            
 
                for (int j=0; j < words.Length ; j++)
                    if (!uniques.Contains(words[j]) )                
                        uniques.Add(words[j]) ;
            }
            return uniques;
        }
        private static object AddElement(IDictionary collection, object key, object newValue)
        {
            object element=collection[key];
            collection[key]=newValue;
            return element;
        }
 
        private int GetTermIndex(string term)
        {
            object index=_wordsIndex[term];
            if (index == null) return -1;
            return (int) index;
        }
 
        private void MyInit()
        {
            _terms=GenerateTerms (_docs );
            _numTerms=_terms.Count ;
 
            _maxTermFreq=new int[_numDocs] ;
            _docFreq=new int[_numTerms] ;
            _termFreq =new int[_numTerms][] ;
            _termWeight=new float[_numTerms][] ;
 
            for(int i=0; i < _terms.Count ; i++)            
            {
                _termWeight[i]=new float[_numDocs] ;
                _termFreq[i]=new int[_numDocs] ;
 
                AddElement(_wordsIndex, _terms[i], i);            
            }
            
            GenerateTermFrequency ();
            GenerateTermWeight();            
        }
        
        private float Log(float num)
        {
            return (float) Math.Log(num) ;//log2
        }
 
        private void GenerateTermFrequency()
        {
            for(int i=0; i < _numDocs  ; i++)
            {                                
                string curDoc=_docs[i];
                IDictionary freq=GetWordFrequency(curDoc);
                IDictionaryEnumerator enums=freq.GetEnumerator() ;
                _maxTermFreq[i]=int.MinValue ;
                while (enums.MoveNext())
                {
                    string word=(string)enums.Key;
                    int wordFreq=(int)enums.Value ;
                    int termIndex=GetTermIndex(word);
 
                    _termFreq [termIndex][i]=wordFreq;
                    _docFreq[termIndex] ++;
 
                    if (wordFreq > _maxTermFreq[i]) _maxTermFreq[i]=wordFreq;                    
                }
            }
        }
        private void GenerateTermWeight()
        {            
            for(int i=0; i < _numTerms   ; i++)
            {
                for(int j=0; j < _numDocs ; j++)                
                    _termWeight[i][j]=ComputeTermWeight (i, j);
            }
        }
 
        private float GetTermFrequency(int term, int doc)
        {            
            int freq=_termFreq [term][doc];
            int maxfreq=_maxTermFreq[doc];            
            
            return ( (float) freq/(float)maxfreq );
        }
 
        private float GetInverseDocumentFrequency(int term)
        {
            int df=_docFreq[term];
            return Log((float) (_numDocs) / (float) df );
        }
 
        private float ComputeTermWeight(int term, int doc)
        {
            float tf=GetTermFrequency (term, doc);
            float idf=GetInverseDocumentFrequency(term);
            return tf * idf;
        }
        
        private  float[] GetTermVector(int doc)
        {
            float[] w=new float[_numTerms] ;
            for (int i=0; i < _numTerms; i++) 
                w[i]=_termWeight[i][doc];
            return w;
        }
 
        public float GetSimilarity(int doc_i, int doc_j)
        {
            float[] vector1=GetTermVector (doc_i);
            float[] vector2=GetTermVector (doc_j);
            return TermVector.ComputeCosineSimilarity(vector1, vector2);
        }
        
        private IDictionary GetWordFrequency(string input)
        {
            string convertedInput=input.ToLower() ;
            Tokeniser tokenizer=new Tokeniser() ;
            String[] words=tokenizer.Partition(convertedInput);
            Array.Sort(words);
            
            String[] distinctWords=GetDistinctWords(words);
                        
            IDictionary result=new Hashtable();
            for (int i=0; i < distinctWords.Length; i++)
            {
                object tmp;
                tmp=CountWords(distinctWords[i], words);
                result[distinctWords[i]]=tmp;
            }
            return result;
        }                
                
        private string[] GetDistinctWords(String[] input)
        {                
            if (input == null)            
                return new string[0];            
            else
            {
                ArrayList list=new ArrayList() ;
                
                for (int i=0; i < input.Length; i++)
                    if (!list.Contains(input[i])) // N-GRAM SIMILARITY"the cat sat on the mat",采用两两分词的方式得到如下结果:{"th", "he", "e ", " c", "ca", "at", "t ", " s", "sa", " o", "on", "n ", " t", " m", "ma"} 
4、使用传统的32位hash函数计算各个word的hashcode,比如:"th".hash = -502157718 
,"he".hash = -369049682,…… 
5、对各word的hashcode的每一位,如果该位为1,则simhash相应位的值加1;否则减1 
6、对最后得到的32位的simhash,如果该位大于1,则设为1;否则设为0
希望本文所述对大家的.net程序设计有所帮助。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
 - 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
 - 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
 - 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
 - 群星《2024好听新歌42》AI调整音效【WAV分轨】
 - 王思雨-《思念陪着鸿雁飞》WAV
 - 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
 - 李健《无时无刻》[WAV+CUE][590M]
 - 陈奕迅《酝酿》[WAV分轨][502M]
 - 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
 - 群星《吉他王(黑胶CD)》[WAV+CUE]
 - 齐秦《穿乐(穿越)》[WAV+CUE]
 - 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
 - 邝美云《邝美云精装歌集》[DSF][1.6G]
 - 吕方《爱一回伤一回》[WAV+CUE][454M]