蝙蝠岛资源网 Design By www.hbtsch.com
这里inference两个程序的连接,如目标检测,可以利用一个程序提取候选框,然后把候选框输入到分类cnn网络中。
这里常需要进行一定的连接。
#加载训练好的分类CNN网络
model=torch.load('model.pkl')
#假设proposal_img是我们提取的候选框,是需要输入到CNN网络的数据
#先定义transforms对输入cnn的网络数据进行处理,常包括resize、totensor等操作
data_transforms=transforms.Compose([transforms.RandomSizedCrop(224),
transforms.ToTensor()])
#由于transforms是对PIL格式数据操作,所以必要时转化格式
def tensor_to_PIL(tensor):
image = tensor.cpu().clone()
image = image.squeeze(0)
image = unloader(image)
return image
#unqueeze(0)是加多一维,对应原来batchsiaze
data=data_transforms(proposal_img).unqueeze(0)
#新版本pytorch已经不用variable,可以省略这句
data=Variable(data)
#貌似这句也是多余的
torch.no_grad()
predict=F.softmax(model(data.cuda()).cuda())
以上这篇pytorch中的inference使用实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
蝙蝠岛资源网 Design By www.hbtsch.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
蝙蝠岛资源网 Design By www.hbtsch.com
暂无pytorch中的inference使用实例的评论...
更新日志
2025年11月26日
2025年11月26日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]