蝙蝠岛资源网 Design By www.hbtsch.com
sklearn的cross_validation包中含有将数据集按照一定的比例,随机划分为训练集和测试集的函数train_test_split
from sklearn.cross_validation import train_test_split #x为数据集的feature熟悉,y为label. x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3)
得到的x_train,y_train(x_test,y_test)的index对应的是x,y中被抽取到的序号。
若train_test_split传入的是带有label的数据,则如下代码:
from sklearn.cross_validation import train_test_split #dat为数据集,含有feature和label. train, test = train_test_split(dat, test_size = 0.3)
train,test含有feature和label的。
自己写了一个函数:
#X:含label的数据集:分割成训练集和测试集 #test_size:测试集占整个数据集的比例 def trainTestSplit(X,test_size=0.3): X_num=X.shape[0] train_index=range(X_num) test_index=[] test_num=int(X_num*test_size) for i in range(test_num): randomIndex=int(np.random.uniform(0,len(train_index))) test_index.append(train_index[randomIndex]) del train_index[randomIndex] #train,test的index是抽取的数据集X的序号 train=X.ix[train_index] test=X.ix[test_index] return train,test
以上这篇python 划分数据集为训练集和测试集的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
蝙蝠岛资源网 Design By www.hbtsch.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
蝙蝠岛资源网 Design By www.hbtsch.com
暂无python 划分数据集为训练集和测试集的方法的评论...
更新日志
2025年04月30日
2025年04月30日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]