蝙蝠岛资源网 Design By www.hbtsch.com
MNIST数据集比较小,一般入门机器学习都会采用这个数据集来训练
下载地址:yann.lecun.com/exdb/mnist/
有4个有用的文件:
train-images-idx3-ubyte: training set images
train-labels-idx1-ubyte: training set labels
t10k-images-idx3-ubyte: test set images
t10k-labels-idx1-ubyte: test set labels
The training set contains 60000 examples, and the test set 10000 examples. 数据集存储是用binary file存储的,黑白图片。
下面给出load数据集的代码:
import os
import struct
import numpy as np
import matplotlib.pyplot as plt
def load_mnist():
'''
Load mnist data
http://yann.lecun.com/exdb/mnist/
60000 training examples
10000 test sets
Arguments:
kind: 'train' or 'test', string charater input with a default value 'train'
Return:
xxx_images: n*m array, n is the sample count, m is the feature number which is 28*28
xxx_labels: class labels for each image, (0-9)
'''
root_path = '/home/cc/deep_learning/data_sets/mnist'
train_labels_path = os.path.join(root_path, 'train-labels.idx1-ubyte')
train_images_path = os.path.join(root_path, 'train-images.idx3-ubyte')
test_labels_path = os.path.join(root_path, 't10k-labels.idx1-ubyte')
test_images_path = os.path.join(root_path, 't10k-images.idx3-ubyte')
with open(train_labels_path, 'rb') as lpath:
# '>' denotes bigedian
# 'I' denotes unsigned char
magic, n = struct.unpack('>II', lpath.read(8))
#loaded = np.fromfile(lpath, dtype = np.uint8)
train_labels = np.fromfile(lpath, dtype = np.uint8).astype(np.float)
with open(train_images_path, 'rb') as ipath:
magic, num, rows, cols = struct.unpack('>IIII', ipath.read(16))
loaded = np.fromfile(train_images_path, dtype = np.uint8)
# images start from the 16th bytes
train_images = loaded[16:].reshape(len(train_labels), 784).astype(np.float)
with open(test_labels_path, 'rb') as lpath:
# '>' denotes bigedian
# 'I' denotes unsigned char
magic, n = struct.unpack('>II', lpath.read(8))
#loaded = np.fromfile(lpath, dtype = np.uint8)
test_labels = np.fromfile(lpath, dtype = np.uint8).astype(np.float)
with open(test_images_path, 'rb') as ipath:
magic, num, rows, cols = struct.unpack('>IIII', ipath.read(16))
loaded = np.fromfile(test_images_path, dtype = np.uint8)
# images start from the 16th bytes
test_images = loaded[16:].reshape(len(test_labels), 784)
return train_images, train_labels, test_images, test_labels
再看看图片集是什么样的:
def test_mnist_data():
'''
Just to check the data
Argument:
none
Return:
none
'''
train_images, train_labels, test_images, test_labels = load_mnist()
fig, ax = plt.subplots(nrows = 2, ncols = 5, sharex = True, sharey = True)
ax =ax.flatten()
for i in range(10):
img = train_images[i][:].reshape(28, 28)
ax[i].imshow(img, cmap = 'Greys', interpolation = 'nearest')
print('corresponding labels = %d' %train_labels[i])
if __name__ == '__main__':
test_mnist_data()
跑出的结果如下:
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
标签:
python,MNIST手写识别
蝙蝠岛资源网 Design By www.hbtsch.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
蝙蝠岛资源网 Design By www.hbtsch.com
暂无python MNIST手写识别数据调用API的方法的评论...
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
2025年11月11日
2025年11月11日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]
