蝙蝠岛资源网 Design By www.hbtsch.com
如下所示:
#tensorflow 中从ckpt文件中恢复指定的层或将指定的层不进行恢复:
#tensorflow 中不同的layer指定不同的学习率
with tf.Graph().as_default():
#存放的是需要恢复的层参数
variables_to_restore = []
#存放的是需要训练的层参数名,这里是没恢复的需要进行重新训练,实际上恢复了的参数也可以训练
variables_to_train = []
for var in slim.get_model_variables():
excluded = False
for exclusion in fine_tune_layers:
#比如fine tune layer中包含logits,bottleneck
if var.op.name.startswith(exclusion):
excluded = True
break
if not excluded:
variables_to_restore.append(var)
#print('var to restore :',var)
else:
variables_to_train.append(var)
#print('var to train: ',var)
#这里省略掉一些步骤,进入训练步骤:
#将variables_to_train,需要训练的参数给optimizer 的compute_gradients函数
grads = opt.compute_gradients(total_loss, variables_to_train)
#这个函数将只计算variables_to_train中的梯度
#然后将梯度进行应用:
apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)
#也可以直接调用opt.minimize(total_loss,variables_to_train)
#minimize只是将compute_gradients与apply_gradients封装成了一个函数,实际上还是调用的这两个函数
#如果在梯度里面不同的参数需要不同的学习率,那么可以:
capped_grads_and_vars = []#[(MyCapper(gv[0]), gv[1]) for gv in grads_and_vars]
#update_gradient_vars是需要更新的参数,使用的是全局学习率
#对于不是update_gradient_vars的参数,将其梯度更新乘以0.0001,使用基本上不动
for grad in grads:
for update_vars in update_gradient_vars:
if grad[1]==update_vars:
capped_grads_and_vars.append((grad[0],grad[1]))
else:
capped_grads_and_vars.append((0.0001*grad[0],grad[1]))
apply_gradient_op = opt.apply_gradients(capped_grads_and_vars, global_step=global_step)
#在恢复模型时:
with sess.as_default():
if pretrained_model:
print('Restoring pretrained model: %s' % pretrained_model)
init_fn = slim.assign_from_checkpoint_fn(
pretrained_model,
variables_to_restore)
init_fn(sess)
#这样就将指定的层参数没有恢复
以上这篇tensorflow 恢复指定层与不同层指定不同学习率的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
蝙蝠岛资源网 Design By www.hbtsch.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
蝙蝠岛资源网 Design By www.hbtsch.com
暂无tensorflow 恢复指定层与不同层指定不同学习率的方法的评论...
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
2025年11月11日
2025年11月11日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]