下载图片
下载图片有两种方式,一种是通过 Requests 模块发送 get 请求下载,另一种是使用 Scrapy 的 ImagesPipeline 图片管道类,这里主要讲后者。
安装 Scrapy 时并没有安装图像处理依赖包 Pillow,需手动安装否则运行爬虫出错。
首先在 settings.py 中设置图片的存储路径:
IMAGES_STORE = 'D:/'
图片处理相关的选项还有:
# 图片最小高度和宽度设置,可以过滤太小的图片 IMAGES_MIN_HEIGHT = 110 IMAGES_MIN_WIDTH = 110 # 生成缩略图选项 IMAGES_THUMBS = { 'small': (50, 50), 'big': (270, 270), }
之前已经存在提取内容的 TuchongPipeline 类,如果使用 ImagePipeline 可以将提取内容的操作都合并过来,但是为了更好的说明图片管道的作用,我们再单独创建一个 ImagePipeline 类,加到 pipelines.py 文件中,同时重载函数 get_media_requests:
class PhotoGalleryPipeline(object): ... class PhotoPipeline(ImagesPipeline): def get_media_requests(self, item, info): for (id, url) in item['images'].items(): yield scrapy.Request(url)
上篇文章中我们把图片的URL保存在了 item['images'] 中,它是一个字典类型的数组,形如:[{img_id: img_url}, ...],此函数中需要把 img_url 取出并构建为 scrapy.Request 请求对象并返回,每一个请求都将触发一次下载图片的操作。
到 settings.py 中注册 PhotoPipeline,并把优先级设的比提取内容的管道要高一些,保证图片下载优先于内容处理,目的是如果有图片下载未成功,通过触发 DropItem 异常可以中断这一个 Item 的处理,防止不完整的数据进入下一管道:
ITEM_PIPELINES = { 'Toutiao.pipelines.PhotoGalleryPipeline': 300, 'Toutiao.pipelines.PhotoPipeline': 200, }
执行爬虫 scrapy crawl photo ,如无错误,在设定的存储目录中会出现一个 full 目录,里面是下载后的图片。
文件名处理
下载的文件名是以图片URL通过 sha1 编码得到的字符,类似 0a79c461a4062ac383dc4fade7bc09f1384a3910.jpg 不是太友好,可以通过重载 file_path 函数自定义文件名,比如可以这样保留原文件名:
... def file_path(self, request, response=None, info=None): file_name = request.url.split('/')[-1] return 'full/%s' % (file_name) ...
上面这样处理难免会有重名的文件被覆盖,但参数 request 中没有过多的信息,不便于对图片分类,因此可以改为重载 item_completed 函数,在下载完成后对图片进行分类操作。
函数 item_completed 的定义:
def item_completed(self, results, item, info)
参数中包含 item ,有我们抓取的所有信息,参数 results 为下载图片的结果数组,包含下载后的路径以及是否成功下载,内容如下:
[(True, {'checksum': '2b00042f7481c7b056c4b410d28f33cf', 'path': 'full/0a79c461a4062ac383dc4fade7bc09f1384a3910.jpg', 'url': 'http://www.example.com/files/product1.pdf'}), (False, Failure(...))]
重载该函数将下载图片转移到分类目录中,同时关联文件路径到 item 中,保持内容与图片为一个整体:
def item_completed(self, results, item, info): image_paths = {x['url'].split('/')[-1]: x['path'] for ok, x in results if ok} if not image_paths: # 下载失败忽略该 Item 的后续处理 raise DropItem("Item contains no files") else: # 将图片转移至以 post_id 为名的子目录中 for (dest, src) in image_paths.items(): dir = settings.IMAGES_STORE newdir = dir + os.path.dirname(src) + '/' + item['post_id'] + '/' if not os.path.exists(newdir): os.makedirs(newdir) os.rename(dir + src, newdir + dest) # 将保存路径保存于 item 中(image_paths 需要在 items.py 中定义) item['image_paths'] = image_paths return item
接下来在原 TuchongPipeline 类中写入数据库的操作中,通过 item['image_paths'] 路径信息写入本地图片链接。
除了 ImagesPipeline 处理图片外,还有 FilesPipeline 可以处理文件,使用方法与图片类似,事实上 ImagesPipeline 是 FilesPipeline 的子类,因为图片也是文件的一种。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]