蝙蝠岛资源网 Design By www.hbtsch.com
开始之前当然要导入模块啦:
> import pymongo
下一步,必须本地mongodb服务器的安装和启动已经完成,才能继续下去。
建立于MongoClient 的连接:
client = MongoClient('localhost', 27017)
# 或者
client = MongoClient('mongodb://localhost:27017/')
得到数据库:
> db = client.test_database # 或者 > db = client['test-database']
得到一个数据集合:
collection = db.test_collection # 或者 collection = db['test-collection']
MongoDB中的数据使用的是类似Json风格的文档:
> import datetime
> post = {"author": "Mike",
... "text": "My first blog post!",
... "tags": ["mongodb", "python", "pymongo"],
... "date": datetime.datetime.utcnow()}
插入一个文档:
> posts = db.posts
> post_id = posts.insert_one(post).inserted_id
> post_id
ObjectId('...')
找一条数据:
> posts.find_one()
{u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']}
> posts.find_one({"author": "Mike"})
{u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']}
> posts.find_one({"author": "Eliot"})
>
通过ObjectId来查找:
> post_id
ObjectId(...)
> posts.find_one({"_id": post_id})
{u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']}
不要转化ObjectId的类型为String:
> post_id_as_str = str(post_id)
> posts.find_one({"_id": post_id_as_str}) # No result
>
如果你有一个post_id字符串,怎么办呢?
from bson.objectid import ObjectId
# The web framework gets post_id from the URL and passes it as a string
def get(post_id):
# Convert from string to ObjectId:
document = client.db.collection.find_one({'_id': ObjectId(post_id)})
多条插入:
> new_posts = [{"author": "Mike",
... "text": "Another post!",
... "tags": ["bulk", "insert"],
... "date": datetime.datetime(2009, 11, 12, 11, 14)},
... {"author": "Eliot",
... "title": "MongoDB is fun",
... "text": "and pretty easy too!",
... "date": datetime.datetime(2009, 11, 10, 10, 45)}]
> result = posts.insert_many(new_posts)
> result.inserted_ids
[ObjectId('...'), ObjectId('...')]
查找多条数据:
> for post in posts.find():
... post
...
{u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']}
{u'date': datetime.datetime(2009, 11, 12, 11, 14), u'text': u'Another post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'bulk', u'insert']}
{u'date': datetime.datetime(2009, 11, 10, 10, 45), u'text': u'and pretty easy too!', u'_id': ObjectId('...'), u'author': u'Eliot', u'title': u'MongoDB is fun'}
当然也可以约束查找条件:
> for post in posts.find({"author": "Mike"}):
... post
...
{u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']}
{u'date': datetime.datetime(2009, 11, 12, 11, 14), u'text': u'Another post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'bulk', u'insert']}
获取集合的数据条数:
> posts.count()
或者说满足某种查找条件的数据条数:
> posts.find({"author": "Mike"}).count()
范围查找,比如说时间范围:
> d = datetime.datetime(2009, 11, 12, 12)
> for post in posts.find({"date": {"$lt": d}}).sort("author"):
... print post
...
{u'date': datetime.datetime(2009, 11, 10, 10, 45), u'text': u'and pretty easy too!', u'_id': ObjectId('...'), u'author': u'Eliot', u'title': u'MongoDB is fun'}
{u'date': datetime.datetime(2009, 11, 12, 11, 14), u'text': u'Another post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'bulk', u'insert']}
$lt是小于的意思。
如何建立索引呢?比如说下面这个查找:
> posts.find({"date": {"$lt": d}}).sort("author").explain()["cursor"]
u'BasicCursor'
> posts.find({"date": {"$lt": d}}).sort("author").explain()["nscanned"]
建立索引:
> from pymongo import ASCENDING, DESCENDING
> posts.create_index([("date", DESCENDING), ("author", ASCENDING)])
u'date_-1_author_1'
> posts.find({"date": {"$lt": d}}).sort("author").explain()["cursor"]
u'BtreeCursor date_-1_author_1'
> posts.find({"date": {"$lt": d}}).sort("author").explain()["nscanned"]
连接聚集
> account = db.Account #或 > account = db["Account"]
查看全部聚集名称
> db.collection_names()
查看聚集的一条记录
> db.Account.find_one()
> db.Account.find_one({"UserName":"keyword"})
查看聚集的字段
> db.Account.find_one({},{"UserName":1,"Email":1})
{u'UserName': u'libing', u'_id': ObjectId('4ded95c3b7780a774a099b7c'), u'Email': u'libing@35.cn'}
> db.Account.find_one({},{"UserName":1,"Email":1,"_id":0})
{u'UserName': u'libing', u'Email': u'libing@35.cn'}
查看聚集的多条记录
> for item in db.Account.find():
item
> for item in db.Account.find({"UserName":"libing"}):
item["UserName"]
查看聚集的记录统计
> db.Account.find().count()
> db.Account.find({"UserName":"keyword"}).count()
聚集查询结果排序
> db.Account.find().sort("UserName") #默认为升序
> db.Account.find().sort("UserName",pymongo.ASCENDING) #升序
> db.Account.find().sort("UserName",pymongo.DESCENDING) #降序
聚集查询结果多列排序
> db.Account.find().sort([("UserName",pymongo.ASCENDING),("Email",pymongo.DESCENDING)])
添加记录
> db.Account.insert({"AccountID":21,"UserName":"libing"})
修改记录
> db.Account.update({"UserName":"libing"},{"$set":{"Email":"libing@126.com","Password":"123"}})
删除记录
> db.Account.remove() -- 全部删除
> db.Test.remove({"UserName":"keyword"})
蝙蝠岛资源网 Design By www.hbtsch.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
蝙蝠岛资源网 Design By www.hbtsch.com
暂无Python的MongoDB模块PyMongo操作方法集锦的评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
2025年11月08日
2025年11月08日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]