导读
排序算法可以称得上是我的盲点, 曾几何时当我知道Chrome的Array.prototype.sort使用了快速排序时, 我的内心是奔溃的(啥是快排, 我只知道冒泡啊"" src="/UploadFiles/2021-04-02/2020030521081454.gif">
冒泡排序需要两个嵌套的循环. 其中, 外层循环移动游标; 内层循环遍历游标及之后(或之前)的元素, 通过两两交换的方式, 每次只确保该内循环结束位置排序正确, 然后内层循环周期结束, 交由外层循环往后(或前)移动游标, 随即开始下一轮内层循环, 以此类推, 直至循环结束.
Tips: 由于冒泡排序只在相邻元素大小不符合要求时才调换他们的位置, 它并不改变相同元素之间的相对顺序, 因此它是稳定的排序算法.
由于有两层循环, 因此可以有四种实现方式.
方案
外层循环
内层循环
1
正序
正序
2
正序
逆序
3
逆序
正序
4
逆序
逆序
四种不同循环方向, 实现方式略有差异.
如下是动图效果(对应于方案1: 内/外层循环均是正序遍历.
如下是上图的算法实现(对应方案一: 内/外层循环均是正序遍历).
//先将交换元素部分抽象出来 function swap(i,j,array){ var temp = array[j]; array[j] = array[i]; array[i] = temp; }
function bubbleSort(array) { var length = array.length, isSwap; for (var i = 0; i < length; i++) { //正序 isSwap = false; for (var j = 0; j < length - 1 - i; j++) { //正序 array[j] > array[j+1] && (isSwap = true) && swap(j,j+1,array); } if(!isSwap) break; } return array; }
以上, 排序的特点就是: 靠后的元素位置先确定.
方案二: 外循环正序遍历, 内循环逆序遍历, 代码如下:
function bubbleSort(array) { var length = array.length, isSwap; for (var i = 0; i < length; i++) { //正序 isSwap = false; for (var j = length - 1; j >= i+1; j--) { //逆序 array[j] < array[j-1] && (isSwap = true) && swap(j,j-1,array); } if(!isSwap) break; } return array; }
以上, 靠前的元素位置先确定.
方案三: 外循环逆序遍历, 内循环正序遍历, 代码如下:
function bubbleSort(array) { var length = array.length, isSwap; for (var i = length - 1; i >= 0; i--) { //逆序 isSwap = false; for (var j = 0; j < i; j++) { //正序 array[j] > array[j+1] && (isSwap = true) && swap(j,j+1,array); } if(!isSwap) break; } return array; }
以上, 由于内循环是正序遍历, 因此靠后的元素位置先确定.
方案四: 外循环逆序遍历, 内循环逆序遍历, 代码如下:
function bubbleSort(array) { var length = array.length, isSwap; for (var i = length - 1; i >= 0; i--) { //逆序 isSwap = false; for (var j = length - 1; j >= length - 1 - i; j--) { //逆序 array[j] < array[j-1] && (isSwap = true) && swap(j,j-1,array); } if(!isSwap) break; } return array; }
以上, 由于内循环是逆序遍历, 因此靠前的元素位置先确定.
以下是其算法复杂度:
平均时间复杂度
最好情况
最坏情况
空间复杂度
O(n²)
O(n)
O(n²)
O(1)
冒泡排序是最容易实现的排序, 最坏的情况是每次都需要交换, 共需遍历并交换将近n²/2次, 时间复杂度为O(n²). 最佳的情况是内循环遍历一次后发现排序是对的, 因此退出循环, 时间复杂度为O(n). 平均来讲, 时间复杂度为O(n²). 由于冒泡排序中只有缓存的temp变量需要内存空间, 因此空间复杂度为常量O(1).
双向冒泡排序
双向冒泡排序是冒泡排序的一个简易升级版, 又称鸡尾酒排序. 冒泡排序是从低到高(或者从高到低)单向排序, 双向冒泡排序顾名思义就是从两个方向分别排序(通常, 先从低到高, 然后从高到低). 因此它比冒泡排序性能稍好一些.
如下是算法实现:
function bothwayBubbleSort(array){ var tail = array.length-1, i, isSwap = false; for(i = 0; i < tail; tail--){ for(var j = tail; j > i; j--){ //第一轮, 先将最小的数据冒泡到前面 array[j-1] > array[j] && (isSwap = true) && swap(j,j-1,array); } i++; for(j = i; j < tail; j++){ //第二轮, 将最大的数据冒泡到后面 array[j] > array[j+1] && (isSwap = true) && swap(j,j+1,array); } } return array; }
选择排序
从算法逻辑上看, 选择排序是一种简单且直观的排序算法. 它也是两层循环. 内层循环就像工人一样, 它是真正做事情的, 内层循环每执行一遍, 将选出本次待排序的元素中最小(或最大)的一个, 存放在数组的起始位置. 而 外层循环则像老板一样, 它告诉内层循环你需要不停的工作, 直到工作完成(也就是全部的元素排序完成).
Tips: 选择排序每次交换的元素都有可能不是相邻的, 因此它有可能打破原来值为相同的元素之间的顺序. 比如数组[2,2,1,3], 正向排序时, 第一个数字2将与数字1交换, 那么两个数字2之间的顺序将和原来的顺序不一致, 虽然它们的值相同, 但它们相对的顺序却发生了变化. 我们将这种现象称作 不稳定性 .
如下是动图效果:
如下是上图的算法实现:
function selectSort(array) { var length = array.length, min; for (var i = 0; i < length - 1; i++) { min = i; for (var j = i + 1; j < length; j++) { array[j] < array[min] && (min = j); //记住最小数的下标 } min!=i && swap(i,min,array); } return array; }
以下是其算法复杂度:
平均时间复杂度
最好情况
最坏情况
空间复杂度
O(n²)
O(n²)
O(n²)
O(1)
选择排序的简单和直观名副其实, 这也造就了它”出了名的慢性子”, 无论是哪种情况, 哪怕原数组已排序完成, 它也将花费将近n²/2次遍历来确认一遍. 即便是这样, 它的排序结果也还是不稳定的. 唯一值得高兴的是, 它并不耗费额外的内存空间.
插入排序
插入排序的设计初衷是往有序的数组中快速插入一个新的元素. 它的算法思想是: 把要排序的数组分为了两个部分, 一部分是数组的全部元素(除去待插入的元素), 另一部分是待插入的元素; 先将第一部分排序完成, 然后再插入这个元素. 其中第一部分的排序也是通过再次拆分为两部分来进行的.
插入排序由于操作不尽相同, 可分为 直接插入排序 , 折半插入排序(又称二分插入排序), 链表插入排序 , 希尔排序 .
直接插入排序
它的基本思想是: 将待排序的元素按照大小顺序, 依次插入到一个已经排好序的数组之中, 直到所有的元素都插入进去.
如下是动图效果:
如下是上图的算法实现:
function directInsertionSort(array) { var length = array.length, index, current; for (var i = 1; i < length; i++) { index = i - 1; //待比较元素的下标 current = array[i]; //当前元素 while(index >= 0 && array[index] > current) { //前置条件之一:待比较元素比当前元素大 array[index+1] = array[index]; //将待比较元素后移一位 index--; //游标前移一位 //console.log(array); } if(index+1 != i){ //避免同一个元素赋值给自身 array[index+1] = current; //将当前元素插入预留空位 //console.log(array); } } return array; }
为了更好的观察到直接插入排序的实现过程, 我们不妨将上述代码中的注释部分加入. 以数组 [5,4,3,2,1] 为例, 如下便是原数组的演化过程.
可见, 数组的各个元素, 从后往前, 只要比前面的元素小, 都依次插入到了合理的位置.
Tips: 由于直接插入排序每次只移动一个元素的位置, 并不会改变值相同的元素之间的排序, 因此它是一种稳定排序.
折半插入排序
折半插入排序是直接插入排序的升级版. 鉴于插入排序第一部分为已排好序的数组, 我们不必按顺序依次寻找插入点, 只需比较它们的中间值与待插入元素的大小即可.
Tips: 同直接插入排序类似, 折半插入排序每次交换的是相邻的且值为不同的元素, 它并不会改变值相同的元素之间的顺序. 因此它是稳定的.
算法基本思想是:
- 取0 ~ i-1的中间点( m = (i-1)1 ), array[i] 与 array[m] 进行比较, 若array[i] < array[m] , 则说明待插入的元素array[i] 应该处于数组的 0 ~ m 索引之间; 反之, 则说明它应该处于数组的 m ~ i-1 索引之间.
- 重复步骤1, 每次缩小一半的查找范围, 直至找到插入的位置.
- 将数组中插入位置之后的元素全部后移一位.
- 在指定位置插入第 i 个元素.
注: x1 是位运算中的右移运算, 表示右移一位, 等同于x除以2再取整, 即 x1 == Math.floor(x/2) .
如下是算法实现:
function binaryInsertionSort(array){ var current, i, j, low, high, m; for(i = 1; i < array.length; i++){ low = 0; high = i - 1; current = array[i]; while(low <= high){ //步骤1&2:折半查找 m = (low + high)1; if(array[i] >= array[m]){//值相同时, 切换到高半区,保证稳定性 low = m + 1; //插入点在高半区 }else{ high = m - 1; //插入点在低半区 } } for(j = i; j > low; j--){ //步骤3:插入位置之后的元素全部后移一位 array[j] = array[j-1]; } array[low] = current; //步骤4:插入该元素 } return array; }
为了便于对比, 同样以数组 [5,4,3,2,1] 举例"折半插入排序" src="/UploadFiles/2021-04-02/2020030521082359.png">
虽然折半插入排序明显减少了查询的次数, 但是数组元素移动的次数却没有改变. 它们的时间复杂度都是O(n²).
希尔排序
希尔排序也称缩小增量排序, 它是直接插入排序的另外一个升级版, 实质就是分组插入排序. 希尔排序以其设计者希尔(Donald Shell)的名字命名, 并于1959年公布.
算法的基本思想:
- 将数组拆分为若干个子分组, 每个分组由相距一定”增量”的元素组成. 比方说将[0,1,2,3,4,5,6,7,8,9,10]的数组拆分为”增量”为5的分组, 那么子分组分别为 [0,5], [1,6], [2,7], [3,8], [4,9] 和 [5,10].
- 然后对每个子分组应用直接插入排序.
- 逐步减小”增量”, 重复步骤1,2.
- 直至”增量”为1, 这是最后一个排序, 此时的排序, 也就是对全数组进行直接插入排序.
如下是排序的示意图:
可见, 希尔排序实际上就是不断的进行直接插入排序, 分组是为了先将局部元素有序化. 因为直接插入排序在元素基本有序的状态下, 效率非常高. 而希尔排序呢, 通过先分组后排序的方式, 制造了直接插入排序高效运行的场景. 因此希尔排序效率更高.
我们试着抽象出共同点, 便不难发现上述希尔排序的第四步就是一次直接插入排序, 而希尔排序原本就是从”增量”为n开始, 直至”增量”为1, 循环应用直接插入排序的一种封装. 因此直接插入排序就可以看做是步长为1的希尔排序. 为此我们先来封装下直接插入排序.
//形参增加步数gap(实际上就相当于gap替换了原来的数字1) function directInsertionSort(array, gap) { gap = (gap == undefined) "htmlcode">function shellSort(array){ var length = array.length, gap = length1, current, i, j; while(gap > 0){ directInsertionSort(array, gap); //按指定步长进行直接插入排序 gap = gap1; } return array; }同样以数组[5,4,3,2,1] 举例"希尔排序" src="/UploadFiles/2021-04-02/2020030521082561.png">
对比上述直接插入排序和折半插入排序, 数组元素的移动次数由14次减少为7次. 通过拆分原数组为粒度更小的子数组, 希尔排序进一步提高了排序的效率.
不仅如此, 以上步长设置为了 {N/2, (N/2)/2, …, 1}. 该序列即希尔增量, 其它的增量序列 还有Hibbard:{1, 3, …, 2^k-1}. 通过合理调节步长, 还能进一步提升排序效率. 实际上已知的最好步长序列是由Sedgewick提出的(1, 5, 19, 41, 109,…). 该序列中的项或者是9*4^i - 9*2^i + 1或者是4^i - 3*2^i + 1. 具体请戳 希尔排序-维基百科 .
Tips: 我们知道, 单次直接插入排序是稳定的, 它不会改变相同元素之间的相对顺序, 但在多次不同的插入排序过程中, 相同的元素可能在各自的插入排序中移动, 可能导致相同元素相对顺序发生变化. 因此, 希尔排序并不稳定.
归并排序
归并排序建立在归并操作之上, 它采取分而治之的思想, 将数组拆分为两个子数组, 分别排序, 最后才将两个子数组合并; 拆分的两个子数组, 再继续递归拆分为更小的子数组, 进而分别排序, 直到数组长度为1, 直接返回该数组为止.
Tips: 归并排序严格按照从左往右(或从右往左)的顺序去合并子数组, 它并不会改变相同元素之间的相对顺序, 因此它也是一种稳定的排序算法.
如下是动图效果:
归并排序可通过两种方式实现:
- 自上而下的递归
- 自下而上的迭代
如下是算法实现(方式1:递归):
function mergeSort(array) { //采用自上而下的递归方法 var length = array.length; if(length < 2) { return array; } var m = (length 1), left = array.slice(0, m), right = array.slice(m); //拆分为两个子数组 return merge(mergeSort(left), mergeSort(right));//子数组继续递归拆分,然后再合并 } function merge(left, right){ //合并两个子数组 var result = []; while (left.length && right.length) { var item = left[0] <= right[0] "htmlcode">function computeMaxCallStackSize() { try { return 1 + computeMaxCallStackSize(); } catch (e) { // Call stack overflow return 1; } } var time = computeMaxCallStackSize(); console.log(time);为此, ES6规范中提出了尾调优化的思想: 如果一个函数的最后一步也是一个函数调用, 那么该函数所需要的栈空间将被释放, 它将直接进入到下次调用中, 最终调用栈里只保留最后一次的调用记录.
虽然ES6规范如此诱人, 然而目前并没有浏览器支持尾调优化, 相信在不久的将来, 尾调优化就会得到主流浏览器的支持.
以下是其算法复杂度:
平均时间复杂度 最好情况 最坏情况 空间复杂度 O(nlog"快速排序" src="/UploadFiles/2021-04-02/2020030521082663.gif">如下是算法实现:
function quickSort(array, left, right) { var partitionIndex, left = typeof left == 'number' "external nofollow" href="https://louiszhai.github.io/2016/12/23/sort/#respond">1 (即堆顶)和无序区的最后一个记录K[n]交换, 由此得到新的无序区K[1..n-1]和有序区K[n], 且满足K[1..n-1].keys≤K[n].key交换K1 和 K[n] 后, 堆顶可能违反堆性质, 因此需将K[1..n-1]调整为堆. 然后重复步骤2, 直到无序区只有一个元素时停止. 如下是动图效果:
如下是算法实现:
function heapAdjust(array, i, length) {//堆调整 var left = 2 * i + 1, right = 2 * i + 2, largest = i; if (left < length && array[largest] < array[left]) { largest = left; } if (right < length && array[largest] < array[right]) { largest = right; } if (largest != i) { swap(i, largest, array); heapAdjust(array, largest, length); } } function heapSort(array) { //建立大顶堆 length = array.length; for (var i = length1; i >= 0; i--) { heapAdjust(array, i, length); } //调换第一个与最后一个元素,重新调整为大顶堆 for (var i = length - 1; i > 0; i--) { swap(0, i, array); heapAdjust(array, 0, --length); } return array; }以上, ①建立堆的过程, 从length/2 一直处理到0, 时间复杂度为O(n);
②调整堆的过程是沿着堆的父子节点进行调整, 执行次数为堆的深度, 时间复杂度为O(lgn);
③堆排序的过程由n次第②步完成, 时间复杂度为O(nlgn).
Tips: 由于堆排序中初始化堆的过程比较次数较多, 因此它不太适用于小序列. 同时由于多次任意下标相互交换位置, 相同元素之间原本相对的顺序被破坏了, 因此, 它是不稳定的排序.
计数排序
计数排序几乎是唯一一个不基于比较的排序算法, 该算法于1954年由 Harold H. Seward 提出. 使用它处理一定范围内的整数排序时, 时间复杂度为O(n+k), 其中k是整数的范围, 它几乎比任何基于比较的排序算法都要快( 只有当O(k)>O(n*log(n))的时候其效率反而不如基于比较的排序, 如归并排序和堆排序).
使用计数排序需要满足如下条件:
- 待排序的序列全部为整数
- 排序需要额外的存储空间
算法的基本思想:
计数排序利用了一个特性, 对于数组的某个元素, 一旦知道了有多少个其它元素比它小(假设为m个), 那么就可以确定出该元素的正确位置(第m+1位)
- 获取待排序数组A的最大值, 最小值.
- 将最大值与最小值的差值+1作为长度新建计数数组B,并将相同元素的数量作为值存入计数数组.
- 对计数数组B累加计数, 存储不同值的初始下标.
- 从原数组A挨个取值, 赋值给一个新的数组C相应的下标, 最终返回数组C.
注意: 如果原数组A是包含若干个对象的数组,需要基于对象的某个属性进行排序,那么算法开始时,需要将原数组A处理为一个只包含对象属性值的简单数组simpleA, 接下来便基于simpleA进行计数、累加计数, 其它同上.
如下是动图效果:
如下是算法实现:
function countSort(array, keyName){ var length = array.length, output = new Array(length), max, min, simpleArray = keyName "htmlcode">var a = [2, 1, 1, 3, 2, 1, 4, 2], b = [ {id: 2, s:'a'}, {id: 1, s: 'b'}, {id: 1, s: 'c'}, {id: 3, s: 'd'}, {id: 2, s: 'e'}, {id: 1, s: 'f'}, {id: 4, s: 'g'}, {id: 2, s: 'h'} ]; countSort(a); // [1, 1, 1, 2, 2, 2, 3, 4] countSort(b, 'id'); // [{id:1,s:'b'},{id:1,s:'c'},{id:1,s:'f'},{id:2,s:'a'},{id:2,s:'e'},{id:2,s:'h'},{id:3,s:'d'},{id:4,s:'g'}]Tips: 计数排序不改变相同元素之间原本相对的顺序, 因此它是稳定的排序算法.
桶排序
桶排序即所谓的箱排序, 它是将数组分配到有限数量的桶子里. 每个桶里再各自排序(因此有可能使用别的排序算法或以递归方式继续桶排序). 当每个桶里的元素个数趋于一致时, 桶排序只需花费O(n)的时间. 桶排序通过空间换时间的方式提高了效率, 因此它需要额外的存储空间(即桶的空间).
算法的基本思想:
桶排序的核心就在于怎么把元素平均分配到每个桶里, 合理的分配将大大提高排序的效率.
如下是算法实现:
function bucketSort(array, bucketSize) { if (array.length === 0) { return array; } var i = 1, min = array[0], max = min; while (i++ < array.length) { if (array[i] < min) { min = array[i]; //输入数据的最小值 } else if (array[i] > max) { max = array[i]; //输入数据的最大值 } } //桶的初始化 bucketSize = bucketSize || 5; //设置桶的默认大小为5 var bucketCount = ~~((max - min) / bucketSize) + 1, //桶的个数 buckets = new Array(bucketCount); //创建桶 for (i = 0; i < buckets.length; i++) { buckets[i] = []; //初始化桶 } //将数据分配到各个桶中,这里直接按照数据值的分布来分配,一定范围内均匀分布的数据效率最为高效 for (i = 0; i < array.length; i++) { buckets[~~((array[i] - min) / bucketSize)].push(array[i]); } array.length = 0; for (i = 0; i < buckets.length; i++) { quickSort(buckets[i]); //对每个桶进行排序,这里使用了快速排序 for (var j = 0; j < buckets[i].length; j++) { array.push(buckets[i][j]); //将已排序的数据写回数组中 } } return array; }Tips: 桶排序本身是稳定的排序, 因此它的稳定性与桶内排序的稳定性保持一致.
实际上, 桶也只是一个抽象的概念, 它的思想与归并排序,快速排序等类似, 都是通过将大量数据分配到N个不同的容器中, 分别排序, 最后再合并数据. 这种方式大大减少了排序时整体的遍历次数, 提高了算法效率.
基数排序
基数排序源于老式穿孔机, 排序器每次只能看到一个列. 它是基于元素值的每个位上的字符来排序的. 对于数字而言就是分别基于个位, 十位, 百位 或千位等等数字来排序. (不明白不要紧, 我也不懂, 请接着往下读)
按照优先从高位或低位来排序有两种实现方案:
- MSD: 由高位为基底, 先按k1排序分组, 同一组中记录, 关键码k1相等, 再对各组按k2排序分成子组, 之后, 对后面的关键码继续这样的排序分组, 直到按最次位关键码kd对各子组排序后. 再将各组连接起来, 便得到一个有序序列. MSD方式适用于位数多的序列.
- LSD: 由低位为基底, 先从kd开始排序,再对kd-1进行排序,依次重复,直到对k1排序后便得到一个有序序列. LSD方式适用于位数少的序列.
如下是LSD的动图效果:
如下是算法实现:
function radixSort(array, max) { var buckets = [], unit = 10, base = 1; for (var i = 0; i < max; i++, base *= 10, unit *= 10) { for(var j = 0; j < array.length; j++) { var index = ~~((array[j] % unit) / base);//依次过滤出个位,十位等等数字 if(buckets[index] == null) { buckets[index] = []; //初始化桶 } buckets[index].push(array[j]);//往不同桶里添加数据 } var pos = 0, value; for(var j = 0, length = buckets.length; j < length; j++) { if(buckets[j] != null) { while ((value = buckets[j].shift()) != null) { array[pos++] = value; //将不同桶里数据挨个捞出来,为下一轮高位排序做准备,由于靠近桶底的元素排名靠前,因此从桶底先捞 } } } } return array; }以上算法, 如果用来比较时间, 先按日排序, 再按月排序, 最后按年排序, 仅需排序三次.
基数排序更适合用于对时间, 字符串等这些整体权值未知的数据进行排序.
Tips: 基数排序不改变相同元素之间的相对顺序, 因此它是稳定的排序算法.
小结
各种排序性能对比如下:
排序类型 平均情况 最好情况 最坏情况 辅助空间 稳定性 冒泡排序 O(n²) O(n) O(n²) O(1) 稳定 选择排序 O(n²) O(n²) O(n²) O(1) 不稳定 直接插入排序 O(n²) O(n) O(n²) O(1) 稳定 折半插入排序 O(n²) O(n) O(n²) O(1) 稳定 希尔排序 O(n^1.3) O(nlogn) O(n²) O(1) 不稳定 归并排序 O(nlog"external nofollow" target="_blank" href="http://visualgo.net/">http://visualgo.net/ 提供图片支持. 特别感谢 不是小羊的肖恩 在简书上发布的 JS家的排序算法 提供的讲解.标签:js排序算法
蝙蝠岛资源网 Design By www.hbtsch.com
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]